Search results for "epithelial-mesenchymal transition"

showing 10 items of 65 documents

CXCR7 Reactivates ERK Signaling to Promote Resistance to EGFR Kinase Inhibitors in NSCLC

2019

Abstract Although EGFR mutant–selective tyrosine kinase inhibitors (TKI) are clinically effective, acquired resistance can occur by reactivating ERK. We show using in vitro models of acquired EGFR TKI resistance with a mesenchymal phenotype that CXCR7, an atypical G protein-coupled receptor, activates the MAPK–ERK pathway via β-arrestin. Depletion of CXCR7 inhibited the MAPK pathway, significantly attenuated EGFR TKI resistance, and resulted in mesenchymal-to-epithelial transition. CXCR7 overexpression was essential in reactivation of ERK1/2 for the generation of EGFR TKI–resistant persister cells. Many patients with non–small cell lung cancer (NSCLC) harboring an EGFR kinase domain mutatio…

0301 basic medicineMAPK/ERK pathwayCancer ResearchLung NeoplasmsDrug ResistanceDrug resistanceTransgenicMiceChemokine receptor0302 clinical medicineNeoplasmsCarcinoma Non-Small-Cell LungReceptorsMedicineNon-Small-Cell LungCXCRReceptorLungbeta-ArrestinsCancerEGFR inhibitorsTumorKinaseLung CancerErbB ReceptorsOncology5.1 Pharmaceuticals030220 oncology & carcinogenesisDevelopment of treatments and therapeutic interventionsTyrosine kinaseEpithelial-Mesenchymal TransitionMAP Kinase Signaling SystemOncology and CarcinogenesisMice TransgenicArticleCell LineExperimental03 medical and health sciencesClinical ResearchCell Line TumorAnimalsHumansOncology & CarcinogenesisProtein Kinase InhibitorsReceptors CXCRbusiness.industryCarcinomaNeoplasms Experimentalrespiratory tract diseases030104 developmental biologyProtein kinase domainDrug Resistance NeoplasmMutationCancer researchNeoplasmbusinessCancer Research
researchProduct

Transcriptional profiling of circulating tumor cells in multiple myeloma: a new model to understand disease dissemination

2020

The reason why a few myeloma cells egress from the bone marrow (BM) into peripheral blood (PB) remains unknown. Here, we investigated molecular hallmarks of circulating tumor cells (CTCs) to identify the events leading to myeloma trafficking into the bloodstream. After using next-generation flow to isolate matched CTCs and BM tumor cells from 32 patients, we found high correlation in gene expression at single-cell and bulk levels (r ≥ 0.94, P = 10−16), with only 55 genes differentially expressed between CTCs and BM tumor cells. CTCs overexpressed genes involved in inflammation, hypoxia, or epithelial–mesenchymal transition, whereas genes related with proliferation were downregulated in CTCs…

0301 basic medicineCancer ResearchEpithelial-Mesenchymal TransitionTranscription GeneticGene ExpressionBiologycirculating tumor cell03 medical and health sciences0302 clinical medicineCirculating tumor cellBone MarrowCell MovementCancer stem cellCell Line TumorTumor MicroenvironmentmedicineHumansHypoxiaMultiple myelomaCell ProliferationInflammationGene knockdownliquid biopsyCD44CENPFHematologyNeoplastic Cells CirculatingPrognosismedicine.disease3. Good healthmultiple myeloma030104 developmental biologymedicine.anatomical_structureOncologyCell culture030220 oncology & carcinogenesisNeoplastic Stem CellsCancer researchbiology.proteinBone marrow
researchProduct

A multidimensional network approach reveals microRNAs as determinants of the mesenchymal colorectal cancer subtype

2016

Colorectal cancer (CRC) is a heterogeneous disease posing a challenge for accurate classification and treatment of this malignancy. There is no common genetic molecular feature that would allow for the identification of patients at risk for developing recurrences and thus selecting patients who would benefit from more stringent therapies still poses a major clinical challenge. Recently, an international multicenter consortium (CRC Subtyping Consortium) was established aiming at the classification of CRC patients in biologically homogeneous CRC subtypes. Four consensus molecular subtypes (CMSs) were identified, of which the mesenchymal CMS4 presented with worse prognosis signifying the impor…

0301 basic medicineMaleCancer ResearchEpithelial-Mesenchymal TransitionGene regulatory networkComputational biologyBiologymedicine.disease_causeEpigenesis Genetic03 medical and health sciencesMolecular Biology; Cancer Research; GeneticsCell Line TumormicroRNAmedicineGeneticsHumansGene Regulatory NetworksEpigeneticsPromoter Regions GeneticMolecular BiologyRegulation of gene expressionCancerComputational BiologyDNA Methylationmedicine.diseasePrognosisSubtyping3. Good healthGene Expression Regulation NeoplasticMicroRNAs030104 developmental biologyPhenotypeMultigene FamilyDNA methylationCancer researchFemaleOriginal ArticleCarcinogenesisColorectal NeoplasmsTranscriptomeOncogene
researchProduct

In vitro evidences of epithelial to mesenchymal transition in low cell-density cultured human fetal hepatocytes

2017

Abstract Culturing fetal hepatocytes in high cell-density allowed stabilization of the hepatocyte phenotype up to 8 weeks, including the maintenance of liver-specific functions. On the other hand, when cultured at low cell-density, fetal hepatocytes underwent morphological modifications and acquired fibroblastic morphology. Since a switch from E-cadherin to vimentin expression accompanied these changes, we hypothesized the occurrence of epithelial-to-mesenchymal transition when fetal hepatocytes were cultured at low cell-density. Changes in gene expressionsuch as up-regulation of fibrosis-related geneswere also observed, suggesting that the low cell-density culture system promoted the acqui…

Liver Cirrhosis0301 basic medicineEpithelial-Mesenchymal TransitionLiver fibrosisLiver fibrosisCell Culture TechniquesBiophysicsCell CountBiologyPrimary culturesBiochemistry03 medical and health sciencesFetal hepatocytesmedicineHumansEpithelial–mesenchymal transitionMolecular BiologyGeneCells CulturedEpithelial to mesenchymal transitionFetusTransition (genetics)Cell BiologyPhenotypeIn vitroCell biology030104 developmental biologymedicine.anatomical_structureLiverHepatocyteImmunologyHepatocytesBiochemical and Biophysical Research Communications
researchProduct

Cyclic pentapeptide cRGDfK enhances the inhibitory effect of sunitinib on TGF-β1-induced epithelial-to-mesenchymal transition in human non-small cell…

2020

AbstractIn human lung cancer progression, the EMT process is characterized by the transformation of cancer cells into invasive forms that migrate to other organs. Targeting to EMT-related molecules is emerging as a novel therapeutic approach for the prevention of lung cancer cell migration and invasion. Traf2- and Nck-interacting kinase (TNIK) has recently been considered as an anti-proliferative target molecule to regulate the Wnt signaling pathway in several types of cancer cells. In the present study, we evaluated the inhibitory effect of a tyrosine kinase inhibitor sunitinib and the integrin-αVβ3targeted cyclic peptide (cRGDfK) on EMT in human lung cancer cells. Sunitinib strongly inhib…

0301 basic medicineCell signalingIntegrinsLung NeoplasmsProtein ExpressionCancer TreatmentSmad ProteinsSignal transductionLung and Intrathoracic TumorsTyrosine-kinase inhibitorAdenosine Triphosphate0302 clinical medicineCarcinoma Non-Small-Cell LungCatalytic DomainAntineoplastic Combined Chemotherapy ProtocolsMedicine and Health SciencesSunitinibWnt Signaling PathwayWNT Signaling CascadeMultidisciplinarySunitinibChemistryQRWnt signaling pathwaySignaling cascadesDrug SynergismExtracellular MatrixMolecular Docking SimulationOncology030220 oncology & carcinogenesisMedicineCellular Structures and OrganellesSignal transductionResearch Articlemedicine.drugCell biologySignal InhibitionEpithelial-Mesenchymal TransitionCell Survivalmedicine.drug_classScienceSMAD signalingProtein Serine-Threonine KinasesResearch and Analysis MethodsPeptides CyclicTransforming Growth Factor beta103 medical and health sciencesCell Line TumorGene Expression and Vector TechniquesCell AdhesionBiomarkers TumormedicineHumansNeoplasm InvasivenessEpithelial–mesenchymal transitionMolecular Biology TechniquesLung cancerMolecular BiologyA549 cellMolecular Biology Assays and Analysis TechniquesBiology and life sciencesCancers and NeoplasmsIntegrin alphaVbeta3medicine.diseaseNon-Small Cell Lung Cancer030104 developmental biologyTGF-beta signaling cascadeA549 CellsTNIKCancer cellCancer researchPLOS ONE
researchProduct

Neutral pH and low–glucose degradation product dialysis fluids induce major early alterations of the peritoneal membrane in children on peritoneal di…

2018

WOS: 000439138700024 PubMed ID: 29776755 The effect of peritoneal dialysates with low-glucose degradation products on peritoneal membrane morphology is largely unknown, with functional relevancy predominantly derived from experimental studies. To investigate this, we performed automated quantitative histomorphometry and molecular analyses on 256 standardized peritoneal and 172 omental specimens from 56 children with normal renal function, 90 children with end-stage kidney disease at time of catheter insertion, and 82 children undergoing peritoneal dialysis using dialysates with low-glucose degradation products. Follow-up biopsies were obtained from 24 children after a median peritoneal dial…

MalePathologymedicine.medical_specialtyEpithelial-Mesenchymal TransitionAdolescentmedicine.medical_treatmentBiopsy030232 urology & nephrologyMedizinPeritonitis030204 cardiovascular system & hematologyPeritonitisperitoneal membranePeritoneal dialysis03 medical and health sciences0302 clinical medicinePeritoneumFibrosisDialysis SolutionsmedicineLymphatic vesselHumansChildDialysisCatheter insertionChemistryInfantHydrogen-Ion Concentrationmedicine.diseaseFibrosismedicine.anatomical_structureGlucoseTreatment Outcomeperitoneal dialysisNephrologyCase-Control StudiesChild PreschoolKidney Failure ChronicFemalePeritoneumchronic kidney diseaseKidney disease
researchProduct

The mitotic kinase Aurora-A promotes distant metastases by inducing epithelial-to-mesenchymal transition in ERα+ breast cancer cells

2013

In this study, we demonstrate that constitutive activation of Raf-1 oncogenic signaling induces stabilization and accumulation of Aurora-A mitotic kinase that ultimately drives the transition from an epithelial to a highly invasive mesenchymal phenotype in estrogen receptor α-positive (ERα(+)) breast cancer cells. The transition from an epithelial- to a mesenchymal-like phenotype was characterized by reduced expression of ERα, HER-2/Neu overexpression and loss of CD24 surface receptor (CD24(-/low)). Importantly, expression of key epithelial-to-mesenchymal transition (EMT) markers and upregulation of the stemness gene SOX2 was linked to acquisition of stem cell-like properties such as the ab…

Smad5 ProteinCancer ResearchEpithelial-Mesenchymal TransitionMAP Kinase Signaling SystemReceptor ErbB-2Active Transport Cell NucleusEstrogen receptorMice NudeBreast NeoplasmsBiologyArticleMicebreast cancerSOX2Cell MovementCell Line TumorGeneticsAnimalsHumansEpithelial–mesenchymal transitionKinase activityNeoplasm MetastasisPhosphorylationRNA Small InterferingMolecular BiologyAurora Kinase Ametastases mitosisSOXB1 Transcription FactorsEstrogen Receptor alphaCD24 AntigenXenograft Model Antitumor AssaysstemneGene Expression Regulation NeoplasticProto-Oncogene Proteins c-rafSettore BIO/18 - GeneticaTumor progressionembryonic structuresCancer researchMCF-7 CellsNeoplastic Stem CellsProto-Oncogene Proteins c-rafFemaleRNA InterferenceSignal transductionEstrogen receptor alphaNeoplasm Transplantation
researchProduct

Induction of Autophagy by Pterostilbene Contributes to the Prevention of Renal Fibrosis via Attenuating NLRP3 Inflammasome Activation and Epithelial-…

2020

Chronic kidney disease (CKD) is recognized as a global public health problem. NLRP3 inflammasome activation has been characterized to mediate diverse aspect mechanisms of CKD through regulation of proinflammatory cytokines, tubulointerstitial injury, glomerular diseases, renal inflammation, and fibrosis pathways. Autophagy is a characterized negative regulation mechanism in the regulation of the NLRP3 inflammasome, which is now recognized as the key regulator in the pathogenesis of inflammation and fibrosis in CKD. Thus, autophagy is undoubtedly an attractive target for developing new renal protective treatments of kidney disease via its potential effects in regulation of inflammasome. Howe…

0301 basic medicineautophagypterostilbeneATG5epithelial-mesenchymal transitionInflammationProinflammatory cytokine03 medical and health sciencesCell and Developmental Biology0302 clinical medicineFibrosismedicineRenal fibrosisEpithelial–mesenchymal transitionlcsh:QH301-705.5Original Researchbusiness.industryAutophagyInflammasomeCell Biologymedicine.diseaserenal fibrosisNLRP3 inflammasome030104 developmental biologylcsh:Biology (General)030220 oncology & carcinogenesisCancer researchmedicine.symptombusinessDevelopmental Biologymedicine.drugFrontiers in Cell and Developmental Biology
researchProduct

Tumor Microenvironment And Epithelial Mesenchymal Transition As Targets To Overcome Tumor Multidrug Resistance

2020

It is well established that multifactorial drug resistance hinders successful cancer treatment. Tumor cell interactions with the tumor microenvironment (TME) are crucial in epithelial-mesenchymal transition (EMT) and multidrug resistance (MDR). TME-induced factors secreted by cancer cells and cancer-associated fibroblasts (CAFs) create an inflammatory microenvironment by recruiting immune cells. CD11b+/Gr-1+ myeloid-derived suppressor cells (MDSCs) and inflammatory tumor associated macrophages (TAMs) are main immune cell types which further enhance chronic inflammation. Chronic inflammation nurtures tumor-initiating/cancer stem-like cells (CSCs), induces both EMT and MDR leading to tumor re…

0301 basic medicineCancer Researchmedicine.medical_treatmentMultidrug resistanceTargeted therapyTargeted therapy0302 clinical medicineCancer-Associated FibroblastsNeoplasmsAntineoplastic Combined Chemotherapy ProtocolsTumor-Associated MacrophagesTumor MicroenvironmentPharmacology (medical)HypoxiaTOR Serine-Threonine KinasesSmall moleculesChemotherapy ; Hypoxia ; Inflammation ; Microenvironment ; Multidrug resistance ; Small molecules ; Targeted therapy.Drug Resistance Multiple3. Good healthDNA DemethylationGene Expression Regulation NeoplasticInfectious DiseasesOncology030220 oncology & carcinogenesisInflammation MediatorsEpithelial-Mesenchymal TransitionStromal cellMicroenvironmentBiologyProinflammatory cytokine03 medical and health sciencesCell Line TumormedicineAnimalsHumansChemotherapyEpithelial–mesenchymal transitionPharmacologyInflammationTumor microenvironmentCancerHypoxia-Inducible Factor 1 alpha Subunitmedicine.diseaseHistone Deacetylase InhibitorsMultiple drug resistanceDisease Models Animal030104 developmental biologyDrug Resistance NeoplasmCancer cellCancer research
researchProduct

Let-7d miRNA Shows Both Antioncogenic and Oncogenic Functions in Osteosarcoma-Derived 3AB-OS Cancer Stem Cells

2015

Osteosarcoma (OS), an aggressive highly invasive and metastatic bone-malignancy, shows therapy resistance and recurrence, two features that likely depend on cancer stem cells (CSCs), which hold both self-renewing and malignant potential. So, effective anticancer therapies against OS should specifically target and destroy CSCs. We previously found that the let-7d microRNA was downregulated in the 3AB-OS-CSCs, derived from the human OS-MG63 cells. Here, we aimed to assess whether let-7d modulation affected tumorigenic and stemness properties of these OS-CSCs. We found that let-7d-overexpression reduced cell proliferation by decreasing CCND2 and E2F2 cell-cycle-activators and increasing p21 an…

Time FactorsEpithelial-Mesenchymal TransitionTime FactorTranscription FactorPhysiologyClinical BiochemistryDrug ResistanceAntineoplastic AgentsApoptosisBone NeoplasmsCell Cycle ProteinsBone NeoplasmTransfectionCell LineAntineoplastic AgentCell MovementCell Line TumorCell Cycle ProteinHumansNeoplasm InvasivenessCell Self RenewalAntineoplastic Agents; Apoptosis; Apoptosis Regulatory Proteins; Bone Neoplasms; Cell Cycle; Cell Cycle Proteins; Cell Line Tumor; Cell Movement; Cell Self Renewal; Drug Resistance Neoplasm; Epithelial-Mesenchymal Transition; Gene Expression Regulation Neoplastic; Humans; MicroRNAs; Neoplasm Invasiveness; Neoplastic Stem Cells; Osteosarcoma; Phenotype; Signal Transduction; Time Factors; Transcription Factors; Transfection; Physiology; Medicine (all); Clinical Biochemistry; Cell BiologyNeoplasm InvasiveneNeoplasticOsteosarcomaTumorApoptosis Regulatory ProteinMedicine (all)Cell CycleApoptosiMicroRNACell BiologyGene Expression Regulation NeoplasticMicroRNAsPhenotypeGene Expression RegulationDrug Resistance NeoplasmNeoplastic Stem CellsNeoplasmNeoplastic Stem CellApoptosis Regulatory ProteinsTranscription FactorsHumanSignal Transduction
researchProduct